机器之心

选自Medium

机器之心编译

参与:张倩

作为全球主流的视频平台,YouTube 的成功离不开精准的视频推荐系统。YouTube 的推荐系统有何亮点?他们解决了哪些问题?在一篇 RecSys 2019 论文中,谷歌研究者对这些问题做出了解释。来自荷兰的一位数据科学家对论文的内容进行了总结。

论文地址:https://dl.acm.org/citation.cfm?id=3346997

Youtube 的推荐系统解决了什么问题?

在 Youtube 上观看视频时,页面上会展示用户可能喜欢的视频推荐列表。该论文聚焦于以下两大目标:

1)需要优化不用的目标。他们没有定义确切的目标函数,而是将目标函数分为「参与度」(点击量、花的时间)目标和「满意度」(点赞量、踩的量)目标;

2)减少系统引入的「选择偏见」:用户通常更倾向于点开排在第一位的推荐视频,尽管后面的视频可能参与度、满意度更高。如何高效地减少这些偏见是一个亟待解决的问题。

用什么方法解决?